Astrochronostratigraphic polarity time scale (APTS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages

نویسندگان

  • Dennis V. Kent
  • Paul E. Olsen
  • Giovanni Muttoni
چکیده

Article history: Received 22 July 2016 Received in revised form 23 December 2016 Accepted 23 December 2016 Available online 05 January 2017 Paleomagnetic and cycle stratigraphic analyses of nearly 7000m of section from continuous cores in the Newark basin and an overlapping 2500meter-thick composite outcrop and core section in the nearby Hartford basin provide an astrochronostratigraphic polarity time-scale (APTS) for practically the entire Late Triassic (Carnian, Norian and Rhaetian) and the Hettangian and early Sinemurian stages of the Early Jurassic (233 to 199 Ma in toto). Aperiodic magnetic polarity reversals make a distinctive pattern of normal and reverse chrons for correlation, ideally paced by the periodic timing of orbital climate cycles, and anchored to million years ago (Ma) by high-precision U-Pb zircon dates from stratigraphically-constrained basalts of the Central Atlantic Magmatic Province (CAMP). Pinned by the CAMPdates, the Newark-Hartford APTS is calibrated by sixty-sixMcLaughlin cycles, each a reflection of climate forcing by the long astronomical eccentricity variation with the stable 405 kyr period, from 199.5 to 225.8Ma and encompassing fifty-onemagnetic polarity intervals, making it one of the longest continuous astrochronostratigraphic polarity time-scales available in theMesozoic and Cenozoic. Extrapolation of sediment accumulation rates in fluvial sediments in the basal Newark section extends the sequence an additional fifteen polarity intervals to 232.7 Ma. The lengths of the 66 polarity chrons vary from 0.011 Myr (Chron E23r) to 1.63Myr (ChronH24n)with an overall mean duration of 0.53Myr. The oldest CAMP basalts provide a zircon U-Pb-based estimated age of 201.5 Ma for the base of the stratigraphically superjacent McLaughlin cycle 61 and 201.6 Ma using cycle stratigraphy for the onset of the immediately subjacent Chron E23r. The calibration age of 201.5Ma for the base of McLaughlin cycle 61 is remarkably consistent with the calculated phase of the 498th long eccentricity cycle counting back using a period of 405 kyr from themost recent peak at 0.216Ma. Accordingly, we suggest a nomenclature (Ecc405:k, where k is the cycle number or fraction thereof) to unambiguously assign ages from the astrochronostratigraphy. Magnetostratigraphic correlation of key Tethyan sections with diagnostic marine biostratigraphic elements to the Newark-Hartford APTS allows determination of numerical ages of standardmarine stages, as follows: 227Ma for the Carnian/Norian boundary, 205.5Ma for theNorian/ Rhaetian boundary (using a chemostratigraphic criterion, or about 4 Myr older for alternative criteria), 201.4Ma for the Triassic/Jurassic boundary, and 199.5 Ma for the Hettangian/Sinemurian boundary. These age estimates are in excellent agreement with available constraints from high-precision U-Pb zircon dating from the Pucara Basin of Peru and along with the presence of the short Chron E23r in several basins argue strongly against suggestions that millions of years of Rhaetian time ismissing in a cryptic hiatus or unconformity that supposedly occurs just above Chron E23r in the Newark Supergroup basins. It is more parsimonious to explain the apparent temporal delays in appearances and disappearances of palynoflora, conchostracans, and other endemic taxa in continental deposits as a reflection of demonstrated continental drift across climate belts and the misinterpretation of ecostratigraphy as chronostratigraphy. The Newark-Hartford APTS provides a chronostratigraphic template for continuing efforts at correlation of Late Triassic and Early Jurassic continental and marine sections throughout the world, including integration with atmospheric pCO2 measurements from paleosol carbonates and carbon isotopic measurements from marine carbonates to better understand the global carbon cycle as well as understanding the causes of and recovery from the end-Triassic mass extinction. © 2017 Elsevier B.V. All rights reserved. Earth-Science Reviews 166 (2017) 153–180

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implications of the Newark Supergroup-based astrochronology and geomagnetic polarity time scale (Newark-APTS) for the tempo and mode of the early diversification of the Dinosauria

The Newark-APTS established a high-resolution framework for the Late Triassic and Early Jurassic. Palaeomagnetic polarity correlations to marine sections show that stage-level correlations of continental sequences were off by as much as 10 million years. New U–Pb ages show the new correlations and the Newark basin astrochronology to be accurate. Correlation of Newark-APTS to the Chinle Formatio...

متن کامل

Astronomically tuned geomagnetic polarity timescale for the Late Triassic

Cycle stratigraphic and magnetostratigraphic analyses of a -5000-m-thick composite section obtained by scientific oring in the Newark rift basin of eastern North America provide a high-resolution astronomically calibrated geomagnetic polarity timescale (GPTS) spanning over 30 m.y. of the Late Triassic and earliest Jurassic. Only normal polarity is found in -1000 m of interbedded volcanics and c...

متن کامل

Astronomically tuned geomagnetic polarity timescale for the

Cycle stratigraphic and magnetostratigraphic analyses of a -5000-m-thick composite section obtained by scientific coring in the Newark rift basin of eastern North America provide a high-resolution astronomically calibrated geomagnetic polarity timescale (GPTS) spanning over 30 m.y. of the Late Triassic and earliest Jurassic. Only normal polarity is found in -1000 m of interbedded volcanics and ...

متن کامل

Tectonosedimentary evolution of the basins in Central Alborz, Iran

Evidence of at least ten different tectonic- controlled sedimentary basins can be recognized in the central part of the Alborz Mountains in the Middle part of the Alpine-Himalayan belt. They formed from Neoprotrozoic to recent time as the results of the relative plate motion in southwest of Asia in Tethyan realm. The basins include: (1) Prototethys Late Neo-Proterozoic to Early Ordovician epi-c...

متن کامل

Introducing Mesozoic siliciclastic-rich refractory sand levels based on geochemical and physical properties in Iran

This research work introduces the Early Triassic, Late Triassic-Early Jurassic, and Early Cretaceous silica-rich sand levels at east and central Alborz, Kopeh-Dagh, and Central Iran, and compares them with the Permian silica-rich sand level in the Chirouk mine at east Iran. Ghoznavi and Gheshlaq loose sand in Alborz (Early Triassic-Early Jurassic), Soh quartzite in Central Iran (Early Triassic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017